The principals of statistical analysis (Statistikk i helsefagleg forsking)

HELSTA Fall 2014

Øystein Haaland

Postdoc, Research Group for Genetic Epidemiology

Department of Global Public Health and Primary Care

University of Bergen

Example of a statistical test I

- <u>Problem</u>: To what extent will a congenital heart malformation (non-cyanotic) influence the motor development of a child?
- A study is performed where 18 children with congenital heart malformation are followed for observation of when the children first were able to walk.

The mean age in months was 14.1

Congenital heart malformation and motor development – test II

- From large studies of normal children it has been shown that the mean age of children at their first steps alone is 13 months with a standard deviation of 1.75 months.
- Based on the problem in question a null-hypothesis (H₀) is defined:
 - Children with congenital heart malformation has the same mean age when they learn to walk
 - H₀: μ = 13 months

Congenital heart malformation and motor development – test III

- Assume a normal distribution of the mean and assume that the H_0 is true, then:
- Calculate the probability that a random sample of 18 children has a mean "as far away from" 13 as 14.1. This is the p-value.
- If the p-value is small (less than 0.05), this means that what we have observed is unlikely to observe. Self-contradiction. Reject the underlying assumption.

						V		0 2	>
			Secon	decimi	al place o	fz			
00.	.01	.02	.03	.04	.05	90.	.07	.08	60'
.5000	.4960	.4920	.4880	.4840	.4801	.4761	.4721	.4681	.4641
.4602	.4562	4522	.4483	.4443	.4404	.4364	.4325	.4286	.4247
.4207	.4168	4129	,4090	,4052	.4013	.3974	3936	.3897	.3859
.3821	.3783	.3745	3707	.3669	.3632	.3594	.3557	.3520	.3483
.3446	.3409	.3372	3336	.3300	.3264	.3228	.3192	.3156	.3121
3085	3050	3015	2981	2946	2912	.2877	.2843	2810	2776
.2743	2709	2676	.2643	.2611	.2578	.2546	.2514	.2483	.2451
.2420	.2389	.2358	2327	.2297	.2266	.2236	2206	.2177	.2148
.2119	.2090	2061	2033	.2005	1977	.1949	.1922	.1894	.1867
.1841	.1814	.1788	.1762	.1736	1711.	.1685	.1660	.1635	.1611
.1587	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	1379
.1357	.1335	.1314	.1292	.1271	.1251	.1230	.1210	.1190	.1170
.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985
8960.	.0951	.0934	.0918	1060.	.0885	.0869	.0853	.0838	.0823
.0808	6620	.0778	.0764	.0749	.0735	.0721	.0708	.0694	.0681
.0668	.0655	.0643	.0630	.0618	0090	.0594	.0582	1750.	.0559
.0548	.0537	,0526	.0516	.0505	.0495	.0485	.0475	.0465	.0455
.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.0367
.0359	.0351	.0344	.0336	.0329	.0322	.0314	7080.	.0301	,0294
.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233
.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.0183
.0179	.0174	.0170	.0166	.0162	.0158	.0154	.0150	.0146	.0143
.0139	.0136	.0132	.0129	.0125	.0122	.0119	.0116	.0113	.0110
7010.	.0104	.0102	6600.	9600.	,0094	1600.	.0089	7800.	.0084
.0082	.0080	.0078	.0075	.0073	.0071	.0069	.0068	.0066	.0064
.0062	0900	.0059	.0057	.0055	.0054	.0052	.0051	.0049	,0048
.0047	.0045	.0044	.0043	.0041	.0040	.0039	8500.	.0037	.0036
0035	0024	0033	0000	1000	0000	00000	0000	1000	0000

t-test

- When the standard error cannot be assumed known, we will use the standard error in the sample (SD) as an estimate of the standard deviation of the population (σ).
- Instead of a z-value, we will compute a t-value for calculating the p-value.
- $t = (\overline{X} \mu_0)/(SD/\sqrt{n}))$
- P-value is found in a t-table using (n-1) degrees of freedom

Table A3 Percentage points of the t distribution.

Adapted from Table 7 of White et al. (1979) with permission of the authors and publishers.

	10.0	č	10 0	0n 0 055	e-sided P-va	alue A AAF	10000	100.0	0,0005
1	c7.0	1.0	cN.U	c7N.N	10.0	CUU.U	C700.0	100.0	c000.0
:	3	:	į	Tw	o-sided P-va	alue	1000		
d.f.	0.5	0.2	0.1	0.05	0.02	0.01	0.005	0.002	0.001
	1.00	3.08	6.31	12.71	31.82	63.66	127.32	318.31	636.62
2	0.82	1.89	2.92	4.30	6.96	9.92	14.09	22.33	31.60
m	0.76	1.64	2.35	3.18	4.54	5.84	7.45	10.21	12.92
4	0.74	1.53	2.13	2.78	3.75	4.60	5.60	7.17	8.61
5	0.73	1.48	2.02	2.5%	3.36	4.03	4.77	5.89	6.87
9	0.72	1.44	1.94	2.45	3.14	3.71	4.32	5.21	5.96
7	0.71	1.42	1.90	2.36	3.00	3.50	4.03	4.78	5.41
8	0.71	1.40	1.86	2.31	2.90	3.36	3.83	4.50	5.04
6	0.70	1.38	1.83	2.26	2.82	3.25	3.69	4.30	4.78
10	0.70	1.37	1.81	2.23	2.76	3.17	3.58	4.14	4.59
11	0.70	1.36	1.80	2.20	2.72	3.11	3.50	4.02	4.44
12	0.70	1.36	1.78	2.18	2.68	3.06	3.43	3.93	4.32
13	0.69	1.35	1.77	2.16	2.65	3.01	3.37	3.85	4.22
14	0.69	1.34	1.76	2.14	2.62	2.98	3.33	3.79	4.14
15	0.69	1.34	1.75	2.13	2.60	2.95	3.29	3.73	4.07
16	0.69	1.34	1.75	2.12	2.58	2.92	3.25	3.69	4.02
17	0.69	1.33	1.74	2.11	2.57	2.90	3.22	3.65	3.96
18	0.69	1.33	1.73	2.10	2.55	2.88	3.20	3.61	3.92
19	0.69	1.33	1.73	2.09	2.54	2.86	3.17	3.58	3.88
20	0.69	1.32	1.72	2.09	2.53	2.84	3.15	3.55	3.85
21	0.69	1.32	1.72	2.08	2.52	2.83	3.14	3.53	3.82
22	0.69	1.32	1.72	2.07	2.51	2.82	3.12	3.50	3.79
23	0.68	1.32	1.71	2.07	2.50	2.81	3.10	3.48	3.77
24	0.68	1.32	1.71	2.06	2.49	2.80	3.09	3.47	3.74
25	0.68	1.32	1.71	2.06	2.48	2.79	3.08	3.45	3.72
26	0.68	1.32	1.71	2.06	2.48	2.78	3.07	3.44	3.71
27	0.68	1.31	1.70	2.05	2.47	2.77	3.06	3.42	3.69
28	0.68	1.31	1.70	2.05	2.47	2.76	3.05	3.41	3.67
29	0.68	1.31	1.70	2.04	2.46	2.76	3.04	3.40	3.66
30	0.68	1.31	1.70	2.04	2.46	2.75	3.03	3.38	3.65
40	0.68	1.30	1.68	2.02	2.42	2.70	2.97	3.31	3.55
60	0.68	1.30	1.67	2.00	2.39	2.66	2.92	3.23	3.46
120	0.68	1.29	1.66	1.98	2.36	2.62	2.86	3.16	3.37
8	0.67	1.28	1.65	1.96	2.33	2.58	2.81	3.09	3.29

		4.::																				
	-]	var																			
Help																						
Vindow	1	S.	Var																			
V SU				_							•								•			
Add-o			Var																			
Litilities		t																				
Granhs	1	i.	EA					1				1				-				1		
atina]	IEV																			
t Marke	ı 🛶																		-			
Direc			Var																			
Analvze	7		~	13,6	11,5	12,3	9,8	14,4	15,0	14,4	15,2	18,4	14,3	13,9	15,8	16,2	10,9	15,6	13,9	15,3	13,6	
form	G		je_wall	.90	82-1	Albe 1		.90.	×2	10	10.00	.00.	68	NO- 1		.03	×2	NO.	10	.00.	87-1	
Trans		3	, a																			
Data				-	2	e	4	5	9	7	00	6	10	F	12	13	14	15	16	17	18	
View		Ĵ	ġ																			
Fdit							5000					1			01	~		10	10		~	
File				-	2	e	4	5	9	7	8	6	1Ĺ	Ŧ	t,	÷	12	4	ŧ	4	46	10

+ T-Test

[DataSet1] //tjalve.uib.no/home/msmti/TEXT/UNDERV/HELSTA/data_congental_hart_malform_n

One-Sample Statistics

One-Sample Test

	e Interval of the ence	Upper	2.134
	95% Confidence Differe	Lower	.106
st Value = 13		Mean Difference	1.1202
Te		Sig. (2-tailed)	.032
		df	17
		t	2.331
			age_walk

🕇 T-Test

[DataSet1] 0:\TEXT\UNDERV\HELSTA\data_congental_hart_malform_no_controls.sav

ŝ
ü
50
÷
9
*
s,
Ð
-
_
=
Ē
Ē
am
Sam
-Sam
e-Sam
ne-Sam
)ne-Sam
One-Sam

	Ν	Mean	Std. Deviation	Std. Error Mean
age_walk	18	14,120	2,0391	,4806

Test
е
e
ar
ŝ
Ē

			Te	est Value = 13		
				Mean	95% Confidence Differ	e Interval of the ence
	t	df	Sig. (2-tailed)	Difference	Lower	Upper
age_walk	2,331	17	280'	1,1202	'100	2,134

	jd	age_walk	group	var	var
-	-	13,6	-		
2	2	11,5	-		
3	33	12,3	-		
4	4	9'8	-		
5	9	14,4	-		
9	9	15,0	-		
7	7	14,4	-		
8	8	15,2	-		
6	6	18,4	-		
10	10	14,3	-		
11	1	13,9	F		
12	12	15,8	F		
13	13	16,2	F		
14	14	10,9	F		
15	15	15,6	-		
16	16	13,9	-		
17	17	15,3	-		
18	18	13,6	-		
19	19	12,8	2		
20	20	13,6	2		
21	21	15,8	2		
22	22	13,2	2		
23	23	10,7	2		
24	24	12,8	2		
25	25	12,2	2		
26	26	11,8	2		
27	27	10,7	2		
28	28	14,0	2		
29	29	12,0	2		
30	30	12,8	2		
31	31	12,7	2		
32	32	16,3	2		
33	33	13,6	2		
34	34	11,5	2		
35	35	13,4	2		
36	36	12,4	2		
37	37	11,8	2		
38	38	14,2	2		
39					

Two sample t-test $H_0: \mu_a = \mu_b$

Comparing the means between two groups A and B $\frac{X_{a} - X_{b}}{SEM(\overline{X}_{a} - \overline{X}_{b})\sqrt{1/n_{a} + 1/n_{b}}}$ $= t_{n_2+n_b-2}$ $t = \frac{\overline{x_1} - \overline{x_2}}{\sqrt{s^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \qquad s^2 = \frac{\sum_{j=1}^{n_1} (x_j - \overline{x_1})^2 + \sum_{i=1}^{n_2} (x_i - \overline{x_2})^2}{n_1 + n_2 - 2}$

T-Test

[DataSet2] 0:\TEXT\UNDERV\HELSTA\data_congental_hart_malform.sav

Group Statistics

L	806	242
Std. Erro Mean	† '	ς.
Std. Deviation	2,0391	1,4497
Mean	14,120	12,920
N	18	20
droup	Con_hart	Control
	age_walk	

Independent Samples Test

	Levene's Test Varia	for Equality of nces				t-test for Equality	of Means		
						Mean	Std. Error	95% Confidenc Differ	e Interval of the ence
	Ъ	Sig.	t	df	Sig. (2-tailed)	Difference	Difference	Lower	Upper
Ik Equal variances assumed	1,219	,277	2,108	36	,042	1,2003	,5695	,0453	2,3553
Equal variances not assumed			2,070	30,362	,047	1,2003	,5797	,0169	2,3836

Another example of test

- Problem: To what extent is the mental health influenced by being next of kin to a person with cancer?
- A study is measuring mental health (by SF-36) of 30 persons being next of kin to a person with cancer.

9. These questions are about how you feel and how things have been with you during the past 4 weeks. For each question, please give the one answer that comes closest to the way you have been feeling. How much of the time during the past 4 weeks.

- a. did you feel full of pep?
- All of the time
- Most of the time
- A good bit of the time
 - Some of the time
 - A little of the time
 - None of the time
- b. have you been a very nervous person?
- All of the time
- Most of the time
- A good bit of the time
 - Some of the time
 - A little of the time
 - None of the time

c. have you felt so down in the dumps nothing could cheer you up?

- All of the time
- Most of the time
- A good bit of the time
 - Some of the time
 - A little of the time
- None of the time

<u>~·</u>	
fu	
8	
ă	
be	
σ	
Ш	Ì
č	
	Ĵ
8	
÷	
fe	
Ŋ	•
Š	L
Ð	
Š	
Ĕ	
d.	

- All of the time
- Most of the time
- A good bit of the time
- Some of the time
 - A little of the time
 - None of the time
- e. did you have a lot of energy?
- All of the time
- Most of the time
- A good bit of the time
 - Some of the time
 - A little of the time
 - None of the time
- f. have you felt downhearted and blue?
 - All of the time
- A good bit of the time Most of the time
- Some of the time
 - A little of the time
 - None of the time

- g. did you feel worn out?
- All of the time
- Most of the time
- A good bit of the time
 - Some of the time
 - A little of the time
 - None of the time

h. have you been a happy person?

- All of the time
- Most of the time
- A good bit of the time
 - Some of the time
 - A little of the time
 - None of the time
- All of the time i. did you feel tired?
- A good bit of the time Most of the time
 - Some of the time
 - A little of the time
 - None of the time

SF-36 Mental Health

Statistical test -1

- Problem:
 - How is the mental health (measured by SF-36) of persons next of kin to cancer patients?
- Define the nullhypothesis based on the problem:
 - H_0 : Next of kin to cancer patients have the same level of mental health as the general population($\mu_0 = 79$).
- Calculated the mean of the sample og 30 persons next of kin

 $-\overline{X} = 71$

Statistisk test - 2

- Calculated the p-value (probability of obtaining a mean that is as far from 79 as the one we got
 - here using SD from the general population) $2 \cdot P(\overline{X} \le 71) =$ $2 \cdot P((\overline{X} - 79) / \frac{15}{\sqrt{30}} \le (71-79) / \frac{15}{\sqrt{30}}) =$
 - * $2 \cdot P(Z \le -2.92) = 2 \cdot P(Z \ge 2.92) = 2 \cdot 0.0017 = 0.0034$

Generally:
$$2 \cdot P(Z \ge (\overline{X} - \mu_0) / \frac{\sigma}{\sqrt{n}})$$

* Using the assumption that \overline{X} is normally distributed with mean 79 and SD = $\frac{15}{\sqrt{30}}$

Statistical test - 2

- Calculated the p-value (probability of obtaining a mean that is as far from 79 as the one we got
 - here using SD from the general population) $2 \cdot P(\overline{X} \le 71) =$

 $2 \cdot P((\overline{X} - 79) / \frac{15}{\sqrt{30}} \le (71 - 79) / \frac{15}{\sqrt{30}}) = 2 \cdot P(Z \le -2.92) = 2 \cdot P(Z \ge 2.92) = 2 \cdot 0.0017 = 0.0034$

Statistical test - 3

- If the p-value is less than the significance level α (i.e. 0.05) the H₀ is rejected.
- If the p-value is greater that α then H₀ may not be rejected. This does NOT mean that we have confirmed H₀, only that these data cannot be used to reject H₀.

t-test

- When the standard deviation cannot be assumed known, we will use the standard deviation in the sample (SD) as an estimate of the standard deviation of the population (σ).
- Instead of a z-value, we will compute a t-value for calculating the p-value.
- $t = (\overline{X} \mu_0)/(SD/\sqrt{n}))$
- P-value is found in a t-table using (n-1) degrees of freedom

	.	Off	ice	2011	3	1	•	D]	3) [] [ù	V	84 6 3	0	1																Л	Nic	ros	of	Ì
× B -				var 📥																																	1	
				var																																	_	
				var																																		
				var																																		
				var																																		
				var																																		
				var																																	•	is ready
		0		var																																		PSS Processor
	dow Help			var																																		
	Utilities Win			var																																		
	lyze Graphs			var																																		
a Editor	ransform Ana	1 1 1	84	kjonn	-	-	2	-	7	2	2	-	2	-	-	7	2	7	~	2	2	2	-	2	-	2	-	2	2	2	-	~	2	-			able View /	
a - SPSS Data	'iew Data Ti	2		mental	84	96	72	76	8	92	37	83	72	76	64	52	92	8	æ	6	64	84	32	8	100	84	8	84	52	84	72	8	32	76			View 🔨 Varia	
📰 test-dat	File Edit V		1 : mental		1	2	m	4	S	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	4 > Data	

	1	Off	ice				•	٩])	3] [ù (Þ	84-5 8-5	0]																Л	/lic	ros	of	t
× B I				var 🔺	5																																-	
				var																																	_	
				var	5																																_	
				var																																		
				var	5																																	
				var	5																																	
																																						>
	indow Help	17 (Means	One-Sample T Test	Independent-bamples I Test Paired-Samiles T Test	One-Way ANOVA																														•	SPSS Processor is read
	Analyze Graphs Utilities W	Reports	Custom Tables	Compare Means 🕨	General Linear Model	Mixed Models	Regression	Loglinear	Classify	Data Reduction 🔹 🕨	Scale	Time Conjection	Survival	Multiple Response	Missing Value Analysis		2	2		2	5	2		5		5		5	5	5			5					
ata Editor	Transform		0	kinn																					•				. 4					•			rriable View	
ata - SPSS Da	View Data			smerte	84	96	72	76	8	32	37	82	72	76	64	52	92	8	æ	100	64	84	32	8	100	84	8	84	52	84	72	48	33	76			ta View 🗸 🗸	e T Test
📰 test-dā	File Edit		1 : smerte		-	5	m	4	ъ Г	9	2	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32		One-Sample

t-test

- When the standard deviation cannot be assumed known, we will use the standard deviation in the sample (SD) as an estimate of the standard deviation of the population (σ).
- Instead of a z-value, we will compute a t-value for calculating the p-value.
- $t = (\overline{X} \mu_0)/(SD/\sqrt{n}))$
- P-value is found in a t-table using (n-1) degrees of freedom

	1	Off	ice				•	٩])	3] [ù (Þ	84-5 8-5	0]																Л	/lic	ros	of	t
× B I				var 🔺	5																																-	
				var																																	_	
				var	5																																_	
				var																																		
				var	5																																	
				var	5																																	
																																						>
	indow Help	17 (Means	One-Sample T Test	Independent-bamples I Test Paired-Samiles T Test	One-Way ANOVA																														•	SPSS Processor is read
	Analyze Graphs Utilities W	Reports	Custom Tables	Compare Means 🕨	General Linear Model	Mixed Models	Regression	Loglinear	Classify	Data Reduction 🔹 🕨	Scale	Time Conjection	Survival	Multiple Response	Missing Value Analysis		2	2		2	5	2		5		5		5	5	5			5					
ata Editor	Transform		0	kinn													. 1								•				. 4					•			rriable View	
ata - SPSS Da	View Data			smerte	84	96	72	76	8	32	37	8	72	76	64	52	92	8	æ	100	64	84	32	8	100	84	8	84	52	84	72	48	33	76			ta View 🗸 🗸	e T Test
📰 test-dā	File Edit		1 : smerte		-	5	m	4	ъ Г	9	2	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32		One-Sample

-		Off	ice	20.01	3	1	•	B	<u> </u>	8] ¢	۵)	\$	84 84 - 3	0]																Л	/lic	ros	of	t
× B -				var 🔺																																		
				var																																		
				var																																		
				var																																		
				var																																		
				var		×	рк	5	Paste	Reset		Carica	Help		Uptions																							
				var				merte]																													-	is ready
		0		var			Variable[s]:	SF-36 smerte [s							Value: 79																							PSS Processor
	dow Help	10 10 10 10 10 10 10 10 10 10 10 10 10 1		var			Test	()	•	^]				Test																							
	Utilities Win			var		mple T Test																																
	lyze Graphs			var		88 One-5a	🔶 Lionn																															
ı Editor	ransform Ana		84	kjonn	-	~	2	~	2	2	2	-	2	-	~	7	5	5	-	2	2	2	-	7	-	2	-	2	7	2	-	-	2	-			ble View /	
a - SPSS Data	iew Data Tr			smerte	84	96	72	76	83	92	37	82	72	76	64	52	92	83	R	<u>6</u>	64	84	33	8	<u>1</u> 0	84	88	84	52	84	72	48	32	76			View 🗸 Varia	
🏢 test-data	File Edit Vi		1 : smerte		-	2	e	4	S	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	B	9	32	Data 1	

T-Test

One-Sample Statistics

				Std. Error
	Ν	Mean	Std. Deviation	Mean
SF-36 mental helse	30	70,90	19,575	3,574

One-Sample Test

			Test Valu	ie = 79		
					95% Co	nfidence
					Interva	l of the
				Mean	Differ	ence
	t	df	Sig. (2-tailed)	Difference	Lower	Upper
SF-36 mental helse	-2,266	29	,031	-8,10	-15,41	-,79

Paired t-test

Paired samples *t*-tests are used when we have a sample of matched pairs of similar units, or one group of units that has been tested twice (a "repeated measures" *t*-test).

•
$$X_{diff} = X_{after} - X_{before}$$

• We use a one sample t-test on X_{diff} with (n-1) d.f.

•
$$t = (X - \mu_0)/(SD/\sqrt{n}))$$

Confidence interval

- The confidence interval (CI) is providing an interval where the «true» mean in the in population where the sample was drawn from is included with a certain probability (i.e. 95%).
- Using the information on the distribution of the mean the CI can be calculated as:
- 95% CI: [X̄ +/- t_{0.975} · SEM] = [X̄ +/- t_{0.975} · SD/√n]

Table A3 Percentage points of the t distribution.

Adapted from Table 7 of White et al. (1979) with permission of the authors and publishers.

	10.0	č	10 0	0n 0 055	e-sided P-va	alue A AAF	10000	100.0	0,0005
1	c7.0	1.0	cN.U	c7N.N	10.0	CUU.U	C700.0	100.0	c000.0
:	3	:	į	Tw	o-sided P-va	alue	1000		
d.f.	0.5	0.2	0.1	0.05	0.02	0.01	0.005	0.002	0.001
	1.00	3.08	6.31	12.71	31.82	63.66	127.32	318.31	636.62
2	0.82	1.89	2.92	4.30	6.96	9.92	14.09	22.33	31.60
m	0.76	1.64	2.35	3.18	4.54	5.84	7.45	10.21	12.92
4	0.74	1.53	2.13	2.78	3.75	4.60	5.60	7.17	8.61
5	0.73	1.48	2.02	2.5%	3.36	4.03	4.77	5.89	6.87
9	0.72	1.44	1.94	2.45	3.14	3.71	4.32	5.21	5.96
7	0.71	1.42	1.90	2.36	3.00	3.50	4.03	4.78	5.41
8	0.71	1.40	1.86	2.31	2.90	3.36	3.83	4.50	5.04
6	0.70	1.38	1.83	2.26	2.82	3.25	3.69	4.30	4.78
10	0.70	1.37	1.81	2.23	2.76	3.17	3.58	4.14	4.59
11	0.70	1.36	1.80	2.20	2.72	3.11	3.50	4.02	4.44
12	0.70	1.36	1.78	2.18	2.68	3.06	3.43	3.93	4.32
13	0.69	1.35	1.77	2.16	2.65	3.01	3.37	3.85	4.22
14	0.69	1.34	1.76	2.14	2.62	2.98	3.33	3.79	4.14
15	0.69	1.34	1.75	2.13	2.60	2.95	3.29	3.73	4.07
16	0.69	1.34	1.75	2.12	2.58	2.92	3.25	3.69	4.02
17	0.69	1.33	1.74	2.11	2.57	2.90	3.22	3.65	3.96
18	0.69	1.33	1.73	2.10	2.55	2.88	3.20	3.61	3.92
19	0.69	1.33	1.73	2.09	2.54	2.86	3.17	3.58	3.88
20	0.69	1.32	1.72	2.09	2.53	2.84	3.15	3.55	3.85
21	0.69	1.32	1.72	2.08	2.52	2.83	3.14	3.53	3.82
22	0.69	1.32	1.72	2.07	2.51	2.82	3.12	3.50	3.79
23	0.68	1.32	1.71	2.07	2.50	2.81	3.10	3.48	3.77
24	0.68	1.32	1.71	2.06	2.49	2.80	3.09	3.47	3.74
25	0.68	1.32	1.71	2.06	2.48	2.79	3.08	3.45	3.72
26	0.68	1.32	1.71	2.06	2.48	2.78	3.07	3.44	3.71
27	0.68	1.31	1.70	2.05	2.47	2.77	3.06	3.42	3.69
28	0.68	1.31	1.70	2.05	2.47	2.76	3.05	3.41	3.67
29	0.68	1.31	1.70	2.04	2.46	2.76	3.04	3.40	3.66
30	0.68	1.31	1.70	2.04	2.46	2.75	3.03	3.38	3.65
40	0.68	1.30	1.68	2.02	2.42	2.70	2.97	3.31	3.55
60	0.68	1.30	1.67	2.00	2.39	2.66	2.92	3.23	3.46
120	0.68	1.29	1.66	1.98	2.36	2.62	2.86	3.16	3.37
8	0.67	1.28	1.65	1.96	2.33	2.58	2.81	3.09	3.29

Correlation

- The correlation coefficient (*r*) measures the strength and direction of the linear association between two ordinal variables
- It varies between -1 and 1;
 - r = 0 indicates no association
 - r = 1 indicates a perfect positive association
 - r = -1 indicates a perfect negative association

Formula for calculating the correlation coefficient

$$r = \frac{\sum_{i=1}^{n} \left(\left(x_i - \overline{x} \right) \left(y_i - \overline{y} \right) \right)}{\sqrt{\sum_{i=1}^{n} \left(x_i - \overline{x} \right)^2 \sum_{i=1}^{n} \left(y_i - \overline{y} \right)^2}}$$

Correlation Between Mental Symptoms and Quality of Life in the MHP Group

Langeland et al. Community Ment Health J 2007;43:321-39

Regression analysis

- A regression analysis is modelling an association between one (or more) response variables (dependent variables) and predictor variables (independent variable).
- The association is estimated as regression coefficients.
- The regression coefficient indicates how much the dependent variable is changing when the independent variable is changing one unit.

$$\mathbf{Y} = \boldsymbol{\beta}_0 + \boldsymbol{\beta}_1 \mathbf{X}_{1,i} + \dots + \boldsymbol{\beta}_k \mathbf{X}_{k,i}$$

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	,599 ^a	,358	,358	10,9939

a. Predictors: (Constant), hoyde

Coefficients^a

		Unstand Coeffi	lardized cients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	-86,178	6,876		-12,534	,000
	hoyde	,939	,040	,599	23,539	,000

a. Dependent Variable: vektkg

Descriptive Statistics

	Ν	Minimum	Maximum	Mean	Std. Deviation
vektkg	994	41,0	142,0	75,458	13,7182
lettmosj	970	1	4	3,25	,828
hardmosj	965	1	4	2,37	1,007
hoyde	994	147	197	172,13	8,745
ald1997	1000	40	47	43,13	2,139
Valid N (listwise)	940				

Correlations

		vektkg	hoyde	lettmosj	hardmosj	ald1997
vektkg	Pearson Correlation	1	,599**	-,058	-,008	-,029
	Sig. (2-tailed)		,000	,073	,808,	,359
	Ν	994	994	966	960	994
hoyde	Pearson Correlation	,599**	1	-,015	,091**	-,062*
	Sig. (2-tailed)	,000		,641	,005	,050
	Ν	994	994	966	960	994
lettmosj	Pearson Correlation	-,058	-,015	1	,417**	,030
	Sig. (2-tailed)	,073	,641		,000	,344
	Ν	966	966	970	944	970
hardmosj	Pearson Correlation	-,008	,091**	,417**	1	,015
	Sig. (2-tailed)	,808,	,005	,000		,650
	Ν	960	960	944	965	965
ald1997	Pearson Correlation	-,029	-,062*	,030	,015	1
	Sig. (2-tailed)	,359	,050	,344	,650	
	Ν	994	994	970	965	1000

** Correlation is significant at the 0.01 level (2-tailed).

* Correlation is significant at the 0.05 level (2-tailed).

					Std. Error
	kjona	Ν	Mean	Std. Deviation	Mean
vektkg	Mann	477	82,696	11,5064	,5268
	Kvinne	517	68,779	12,1199	,5330

Group Statistics

Independent Samples Test

		Levene's Equality of	Test for Variances			t-test fo	r Equality of N	leans		
							Mean	Std. Error	95% Coi Interva Differ	nfidence I of the ence
		F	Sig.	t	df	Sig. (2-tailed)	Difference	Difference	Lower	Upper
vektkg	Equal variances assumed	,035	,851	18,531	992	,000	13,9171	,7510	12,4434	15,3909
	Equal variances not assumed			18,570	991,186	,000	13,9171	,7495	12,4464	15,3878

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	,613 ^a	,376	,373	10,9163

a. Predictors: (Constant), hardmosj, kjona, lettmosj, hoyde

ANOVA^b

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	67133,350	4	16783,338	140,841	,000 ^a
	Residual	111419,3	935	119,165		
	Total	178552,6	939			

a. Predictors: (Constant), hardmosj, kjona, lettmosj, hoyde

b. Dependent Variable: vektkg

Coefficients^a

		Unstand Coeffi	lardized cients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	-50,730	11,379		-4,458	,000
	hoyde	,785	,059	,496	13,250	,000
	kjona	-4,214	1,036	-,153	-4,067	,000
	lettmosj	-,202	,479	-,012	-,422	,673
	hardmosj	-,811	,395	-,059	-2,051	,041

a. Dependent Variable: vektkg

Estimation of expected value in a regression analysis

Weight = -50.7 + 0.79 height -4.2 sex - 0.20 lightex -0.81 heavex

Expl. Woman of 160 cm, light exercise 1-2 times a week and heavy exercise 1-2 times a week

Weight = $-50.7 + 0.79 \times 160 - 4.2 \times 2 - 0.20 \times 3 - 0.81 \times 3$

Weight = -50.7 + 126.4 - 8.4 - 0.60 - 2.24 = 64.5

A regression analysis is modeling the level of a <u>linear association</u> between variables

Cannot estimate non-linear associations

Fig. 1. Alcohol consumption and health-related quality of life (SF-12 Health Survey) among 22,312 subjects in Hordaland County, Norway aged 40 – 47 years.

A <u>statistically significant</u> association between two variables does not neccesarily mean that there is a <u>causal</u> relationship between the two variables

Oldenburg

Chi-square test (χ^2 -test)

- To test the association between two variables on a nominal level.
- Observed number (O) for each combination of values of the two variables is listed in a table.
- Expected number (E) for each cell is calculated.
- χ² = Σ(O E)²/E has a chi-square distribution with (r-1)·(s-1) degrees of freedom, where r and s are the number of catgories for each of the two variables

Chi-square test - example

Pain during labor – is there a difference in the perceived level of pain between women giving birth for the first time and women who have given birth before?

	Weak or moderate pain	Strong or unbearable pain	
First time	Α	B	A+B
mothers	$\mathbf{E} = (\mathbf{A} + \mathbf{B})(\mathbf{A} + \mathbf{C})/\mathbf{n}$	$\mathbf{E} = (\mathbf{A} + \mathbf{B})(\mathbf{B} + \mathbf{D})/n$	
Given birth	С	D	C+D
before	E = (A+C)(C+D)/n	E = (B+D)(C+D)/n	
	A+C	B+D	$n = \\ A+B+C+D$

Level of pain

Chi-square test - example

Pain during labor – is there a difference in the perceived level of pain between women giving birth for the first time and women who have given birth before?

	Weak or moderate pain	Strong or unbearable pain	
First time	33	40	73
mothers	45%	55%	100%
Given birth	46	28	74
before	62%	38%	100%
	79	68	147

Level of pain

Relative risk (RR) = proportion of women with strong pain among first time mothers - divided by the proportion of women with strong pain among women having given birth before

RR = 55% / 38% = 1.45

Chi-square test - example

Level of pain

	Weak or moderate pain	Strong or unbearable pain	
First time mothers	33 E = 39.2	40 E = 33.8	73
Given birth before	46 E = 39.8	28 E = 34.2	74
	79	68	147

 $\chi^2 = \Sigma(O - E)^2 / E = (33-39)^2 / 39.2 + (40-33.8)^2 / 33.8 + ... = 4.25$

One degree of freedom: p-value between 0.05 and 0.025 (table A5).

				P-V3	alue			
d.f.	0.5	0.25	0.1	0.05	0.025	0.01	0.005	0.001
-	0.45	1.32	2.71	3.84	5.02	6.63	7.88	10.83
2	1.39	2.77	4.61	5.99	7.38	9.21	10.60	13.82
m	2.37	4.11	6.25	7.81	9.35	11.34	12.84	16.27
4	3.36	5.39	7.78	9.49	11.14	13.28	14.86	18.47
2	4.35	6.63	9.24	11.07	12.83	15.09	16.75	20.52
9	5.35	7.84	10.64	12.59	14.45	16.81	18.55	22.46
7	6.35	9.04	12.02	14.07	16.01	18.48	20.28	24.32
8	7.34	10.22	13.36	15.51	17.53	20.09	21.96	26.13
6	8.34	11.39	14.68	16.92	19.02	21.67	23.59	27.88
10	9.34	12.55	15.99	18.31	20.48	23.21	25.19	29.59
11	10.34	13.70	17.28	19.68	21.92	24.73	26.76	31.26
12	11.34	14.85	18.55	21.03	23.34	26.22	28.30	32.91
13	12.34	15.98	19.81	22.36	24.74	27.69	29.82	34.53
14	13.34	17.12	21.06	23.68	26.12	29.14	31.32	36.12
15	14.34	18.25	22.31	25.00	27.49	30.58	32.80	37.70
16	15.34	19.37	23.54	26.30	28.85	32.00	34.27	39.25
17	16.34	20.49	24.77	27.59	30.19	33.41	35.72	40.79
18	17.34	21.60	25.99	28.87	31.53	34.81	37.16	42.31
19	18.34	22.72	27.20	30.14	32.85	36.19	38.58	43.82
20	19.34	23.83	28.41	31.41	34.17	37.57	40.00	45.32
21	20.34	24.93	29.62	32.67	35.48	38.93	41.40	46.80
22	21.34	26.04	30.81	33.92	36.78	40.29	42.80	48.27
23	22.34	27.14	32.01	35.17	38.08	41.64	44.18	49.73
24	23.34	28.24	33.20	36.42	39.36	42.98	45.56	51.18
25	24.34	29.34	34.38	37.65	40.65	44.31	46.93	52.62
26	25.34	30.43	35.56	38.89	41.92	45.64	48.29	54.05
27	26.34	31.53	36.74	40.11	43.19	46.96	49.64	55.48
28	27.34	32.62	37.92	41.34	44.46	48.28	50.99	56.89
29	28.34	33.71	39.09	42.56	45.72	49.59	52.34	58.30
30	29.34	34.80	40.26	43.77	46.98	50.89	53.67	59.70
40	39.34	45.62	51.81	55.76	59.34	63.69	66.77	73.40
50	49.33	56.33	63.17	67.50	71.42	76.15	79.49	86.66
60	59.33	66.98	74.40	79.08	83.30	88.38	91.95	99.61
70	69.33	77.58	85.53	90.53	95.02	100.43	104.22	112.32
80	79.33	88.13	96.58	101.88	106.63	112.33	116.32	124.84
06	89.33	98.65	107.57	113.15	118.14	124.12	128.30	137.21
100	99.33	109.14	118.50	124.34	129.56	135.81	140.17	149.45

Table A5 Percentage points of the $\chi^{\rm 2}$ distribution.

røyk * hjertesykdom	Crosstabulation
---------------------	-----------------

			hjertes		
			Ja	Nei	Total
røyk	Ja	Count	205	13958	14163
		% within røyk	1,4%	98,6%	100,0%
	Nei	Count	58	8096	8154
	% within røyk	,7%	99,3%	100,0%	
Total		Count	263	22054	22317
		% within røyk	1,2%	98,8%	100,0%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)	Exact Sig. (2-sided)	Exact Sig. (1-sided)
Pearson Chi-Square	24,078 ^b	1	,000		
Continuity Correction	23,450	1	,000		
Fisher's Exact Test				,000	,000
N of Valid Cases	22317				

H0: No difference in risk of heart disease between smokers and nonsmokers

H1: Difference in risk

H0 rejected because p<0.05

a. Computed only for a 2x2 table

b. 0 cells (,0%) have expected count less than 5. The minimum expected count is 96,09.

Risk Estimate

		95% Confidence Interval		
	Value	Lower	Upper	
Odds Ratio for røyk (Nei / Ja)	2,050	1,530	2,747	OR
For cohort hjertesykdom = Ja	2,035	1,522	2,720	RR
N of Valid Cases	22317			

H0 rejected because 95% confidence interval did not contain 1

kjona * hjertesykdom Crosstabulation

			hjertes		
			Ja	Nei	Total
kjona	Mann	Count	169	10094	10263
		% within kjona	1,6%	98,4%	100,0%
	Kvinne	Count	94	11960	12054
		% within kjona	,8%	99,2%	100,0%
Total		Count	263	22054	22317
		% within kjona	1,2%	98,8%	100,0%

H0: No difference in risk of heart disease between males and femalesH1: Difference in risk

Risk Estimate

		95% Confidence Interval		
	Value	Lower	Upper	H0 rejected?
Odds Ratio for kjona (Mann / Kvinne)	2,130	1,653	2,745	OR
For cohort hjertesykdom = Ja	2,112	1,643	2,714	RR
N of Valid Cases	22317			

kjona * hjertesykdom Crosstabulation

			hjertes		
			Ja	Nei	Total
kjona	Mann	Count	169	10094	10263
		% within kjona	1,6%	98,4%	100,0%
	Kvinne	Count	94	11960	12054
		% within kjona	,8%	99,2%	100,0%
Total		Count	263	22054	22317
		% within kjona	1,2%	98,8%	100,0%

H0: No difference in risk of heart disease between males and femalesH1: Difference in risk

Risk Estimate

		95% Confidence Interval		
	Value	Lower	Upper	
Odds Ratio for kjona (Mann / Kvinne)	2,130	1,653	2,745	OR
For cohort hjertesykdom = Ja	2,112	1,643	2,714	RR
N of Valid Cases	22317			

H0 rejected? Yes, because 1 is not contained in the 95% confidence interval(s)

			hjertesykdom		
			Ja	Nei	Total
ald1997	40	Count	26	3636	3662
		% within ald1997	,7%	99,3%	100,0%
	41	Count	36	3692	3728
		% within ald1997	1,0%	99,0%	100,0%
	42	Count	38	3703	3741
		% within ald1997	1,0%	99,0%	100,0%
	43	Count	52	3692	3744
		% within ald1997	1,4%	98,6%	100,0%
	44	Count	45	3661	3706
		% within ald1997	1,2%	98,8%	100,0%
	46	Count	35	1753	1788
		% within ald1997	2,0%	98,0%	100,0%
	47	Count	31	1917	1948
		% within ald1997	1,6%	98,4%	100,0%
Total		Count	263	22054	22317
		% within ald1997	1,2%	98,8%	100,0%

ald1997 * hjertesykdom Crosstabulation

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	22,835 ^a	6	,001
N of Valid Cases	22317		

H0 rejected?

a. 0 cells (,0%) have expected count less than 5. The minimum expected count is 21,07.

H0: Age does not matter

H1: Age matters

			hjertesykdom			
			Ja	Nei	Total	
ald1997	40	Count	26	3636	3662	H0: Age does not
		% within ald1997	,7%	99,3%	100,0%	matter
	41	Count	36	3692	3728	H1. Ane matters
		% within ald1997	1,0%	99,0%	100,0%	
	42	Count	38	3703	3741	
		% within ald1997	1,0%	99,0%	100,0%	
	43	Count	52	3692	3744	
		% within ald1997	1,4%	98,6%	100,0%	
	44	Count	45	3661	3706	
		% within ald1997	1,2%	98,8%	100,0%	
	46	Count	35	1753	1788	
		% within ald1997	2,0%	98,0%	100,0%	
	47	Count	31	1917	1917 1948	
		% within ald1997	1,6%	98,4%	100,0%	
Total		Count	263	22054	22317	
		% within ald1997	1,2%	98,8%	100,0%	

ald1997 * hjertesykdom Crosstabulation

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	22,835 ^a	6	,001
N of Valid Cases	22317		

H0 rejected? Yes, because p<0.05

a. 0 cells (,0%) have expected count less than 5. The minimum expected count is 21,07.

			hjertes	ykdom	
			Ja	Nei	Total
alccat2	1	Count	65	4968	5033
		% within alccat2	1,3%	98,7%	100,0%
	2	Count	22	1932	1954
		% within alccat2	1,1%	98,9%	100,0%
	3	Count	34	3110	3144
		% within alccat2	1,1%	98,9%	100,0%
	4	Count	24	2853	2877
		% within alccat2	,8%	99,2%	100,0%
	5	Count	39	3159	3198
		% within alccat2	1,2%	98,8%	100,0%
	6	Count	35	2774	2809
		% within alccat2	1,2%	98,8%	100,0%
	7	Count	13	619	632
		% within alccat2	2,1%	97,9%	100,0%
	8	Count	1	61	62
		% within alccat2	1,6%	98,4%	100,0%
Total		Count	233	19476	19709
		% within alccat2	1,2%	98,8%	100,0%

alccat2 * hjertesykdom Crosstabulation

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	8,197 ^a	7	,316
N of Valid Cases	19709		

H0 rejected?

H0: Alcohol use does

not matter

H1: Alcohol use matters

a. 1 cells (6,3%) have expected count less than 5. The minimum expected count is ,73.

			hjertes	ykdom	
			Ja	Nei	Total
alccat2	1	Count	65	4968	5033
		% within alccat2	1,3%	98,7%	100,0%
	2	Count	22	1932	1954
		% within alccat2	1,1%	98,9%	100,0%
	3	Count	34	3110	3144
		% within alccat2	1,1%	98,9%	100,0%
	4	Count	24	2853	2877
		% within alccat2	,8%	99,2%	100,0%
	5	Count	39	3159	3198
		% within alccat2	1,2%	98,8%	100,0%
	6	Count	35	2774	2809
		% within alccat2	1,2%	98,8%	100,0%
	7	Count	13	619	632
		% within alccat2	2,1%	97,9%	100,0%
	8	Count	1	61	62
		% within alccat2	1,6%	98,4%	100,0%
Total		Count	233	19476	19709
		% within alccat2	1,2%	98,8%	100,0%

alccat2 * hjertesykdom Crosstabulation

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	8,197 ^a	7	,316
N of Valid Cases	19709		

H0 rejected? No, because p>0.05

H0: Alcohol use does

not matter

H1: Alcohol use matters

a. 1 cells (6,3%) have expected count less than 5. The minimum expected count is ,73.