MEDSTA 2: Regression models in medical research

29 April 2014

Øystein Ariansen Haaland, PHD Department of Global Public Health and Primary Care, University of Bergen

Multiple linear regression

- $-y_i = \beta_0 + \beta_1 x_{1i} + \dots + \beta_K x_{Ki} + \epsilon_i$
- $-y_i$ is the observed value of subject i
- x_{ki} is the k'th observation of subject i
 - There are K observations per subject
 - E.g., age, sex, height, weight
- β 's are regression coefficients
- ϵ_i is error

Multiple linear regression

- β 's are unknown
- ϵ 's are unknown
- Estimated line

 $-\hat{y}_{i} = b_{0} + b_{1}x_{1i} + \dots + b_{Ki}x_{K}$

- Add quadratic term: $\hat{y}_i = b_0 + b_1 x + b_2 x^2$
 - x changes 1 unit, y changes approximately $b_1 + 2b_2 x$ units
 - Negative $b_2 \Rightarrow$ sad graph
 - Positive $b_2 \Rightarrow$ happy graph

- Add quadratic term: $\hat{y}_i = b_0 + b_1 x + b_2 x^2$
- Stata:
 - gen x2=x^2
 - Creates new variable
 - regress y x x2
 - Normal regression

- Categorize x: $\hat{y}_i = b_0 + b_1 x_{i1} + b_2 x_{i2}$
 - x_{i0} is reference
 - b_1 is effect of x_{i1} relative to x_{i0}
 - b_2 is effect of x_{i2} relative to x_{i0}

- Categorize x: $\hat{y}_i = b_0 + b_1 x_{i1} + b_2 x_{i2}$
- Stata:
 - gen x_cat=0
 - replace x_cat=1 if x>30
 - replace x_cat=2 if x>70
 - regress y i.x

What if y is not normal?

What if y is not normal? NOT important!

- In a group of men and women, height is not normal
- Adjusting for height makes the error normal

10

What if the error is not normal? ALSO not very important!

Coefficients will be normal if n is large because of Central limit theorem.

What if the error is not normal? ALSO not very important!

-
$$\beta_0 = 20, \beta_1 = 1$$

What if the error is not normal? ALSO not very important!

- $b_0 = 19.5, b_1 = 0.99, SE(b_1) \approx 0.06$

- Log-transform y-variable
- Errors looks more symmetric

- Log-transform y-variable
- Not straightforward to interpret coefficients

- Log-transform y-variable
- β_1 is relative y-change with 1 unit change of x

What if the error is not normal?

- Log-transform y-variable

$$-\beta_1 = y(x+1)/y(x)$$

What if the standard deviation varies with x?

- Heteroscedasticity
- Coefficients remain unbiased
- Standard errors (and p-values) are wrong

What if the standard deviation varies with x?

- More emphasis is put on areas where the standard deviation is large
- Normally NOT very important

Causes of heteroscedasticity

- Large X necessary for large Y (e.g., spending)
- Measurement errors (uncertainty about X)
- Subpopulation differences

Causes of heteroscedasticity

- Bad model specification!

Cures for heteroscedasticity

- Re-specify model
 - Add/remove variables
 - Transform variables
 - Categorize variables
- Use robust standard errors
 - Stata: regress y x, vce(robust)

Cures for heteroscedasticity

- Logistic regression will always have heteorscedasticity
 - Outcome is 0 or 1
 - Predicted outcome is a probability (between 0 and 1)

What if errors are not independent?

- E.g., we have $\epsilon_1 > 0$ if $\epsilon_2 > 0$
- Several observations on the same cluster
 - Same individual
 - Same family
 - Same ethnicity
 - Same gender

What if errors are not independent?

- E.g., we have $\epsilon_1 > 0$ if $\epsilon_2 > 0$
- Coefficients remain unbiased
- Too small standard errors
- Too low p-values

What to do if errors are not independent?

- Account for the clusters
 - Stata: regress y x, vce(cluster id)
 - Mother with several children
- Random intercept
- Attend MEDSTA3/MEDLONG

What if we have multicollinearity?

- High correlation between x-variables
 - E.g., gestational age and birth weight, or height and weight
- Coefficients will remain unbiased
- Standard errors will be too large
- p-values will be too high

How do we detect multicollinearity?

- Calculate Variation inflation factor (VIF)
- Stata: regress y x1 x2 x3 estat vif
- VIF>5 should prompt caution

What to do in case of multicollinearity?

- NOT a problem...
 - ...unless it involves study variable
 - ...if it only involves variables that are functions of each other (e.g., x and x^2 , or x, z and $x \cdot z$)
 - ...if it only involves categorical varaiables with at least three categories

What to do in case of multicollinearity?

- NOT a problem...
 - ...unless it involves study variable

If the study variable has a low VIF, the standard error is not affected by a high VIF at other variables.

What to do in case of multicollinearity?

- Multicollinearity is NOT a problem...
 - ...if it only involves variables that are functions of each other (e.g., x and x^2 , or x, z and $x \cdot z$)

Such variables are expected to be correlated, and p-values will not be affected. VIF can be reduced by subtracting the mean from each variable (before multiplication).

What to do in case of multicollinearity?

- Multicollinearity is NOT a problem...
 - ...if it only involves categorical varaiables with at least three categories

If the reference category is small, the VIF will be high. Choosing a reference with a larger fraction of the observations will reduce the VIF. A high VIF does not affect an overall test that all indicators have coefficients of zero.

What to do in case of multicollinearity?

- If multicollinearity IS a problem
- Drop variables with high VIFs
 - E.g., use only one of GA and birth weight, or one of height and weight
- Change variables with high VIFs
 - E.g., use «Small for GA», not GA

Evaluation

- Home exam
 - Due on May 18
 - Focus on day 5 and day 6
 - You pass or fail (no grades)
- Oral presentation
 - May 12
 - Work in groups

Evaluation

- Will put a poll on My space (Mi side)
- Please evaluate the course
- First time in its current form
- Please don't write:
 - «The book was retarded!»
 - «There was no use going to the lectures because he didn't say anything that was not in the handouts.»