MEDSTA 2: Regression models in medical research

18 January 2014

Øystein Ariansen Haaland, PHD Department of Global Public Health and Primary Care, University of Bergen

• What is (statistical) power?

• What is (statistical) power?

Recult of test

• What is (statistical) power?

		Result of test		
		Keep H ₀	Reject H ₀	
The truth	H ₀ true	True negative $1-\alpha$	Type I error α	
	H ₀ false	Type II error β	True positive $1 - \beta$	

What is (statistical) power?
 The probablity of rejecting a false H₀

		Keep H ₀	Reject H ₀
The truth	H ₀ true	True negative	Type I error
		$1-\alpha$	α
	H_0 false	Type II error	True positive
		ρ	1 - p

Result of test

What is (statistical) power?
 The probablity of rejecting a false H₀

		Keep H ₀	Reject H ₀
The truth	H ₀ true	True negative $1-\alpha$	Type I error α
	H ₀ false	Type II error β	True positive $1 - \beta$

Result of test

- What is (statistical) power?
 - The probablity of rejecting a false H_0
 - $P(\text{Reject } H_0 | H_0 \text{ false})$
 - $-P(p<0.05|H_0 \text{ false})$
- If the power is low, we do not reject *H*₀ even if we should have.

- Consequences of low power
 - More difficult to get financing.
 - More difficult to get aproval from ethical commitees.
 - We risk wasting our time. Have to rely on luck.
 - Power affects how we have to interpret our results (will come back to this).

- Power depends on
 - Sample size, n
 - Effect size, Δ
 - Significance level, α

- Power calculations z-test (σ known)
 - $H_0: \mu = \mu_0, \qquad H_A: \mu < \mu_0$
 - Power (unknown effect size Δ , *n* known)
 - 1 β
 - $P(\text{Reject } H_0 | \mu = \mu_0 \Delta)$
 - $P\left(Z < z_{\alpha} + \frac{\Delta\sqrt{n}}{\sigma}\right)$

- Power calculations z-test (σ known)
 - Consider a drug to reduce fever
 - Give drug to a group of patients and measure how the fever develops
 - $-H_0: \mu = 0$ (no decrease)
 - H_A : $\mu < 0$ (fever drops)
 - Assume $\sigma = 0.4$

- Power calculations z-test (σ known) - H_0 : $\mu = 0$, H_A : $\mu < 0$
 - Power (unknown effect size Δ , *n* known)

15

- Power calculations: z-test (σ known)
 - One sample
 - Consoder power = 1β
 - Consider effect size = Δ
 - One-sided test ($H_0: \mu \leq \mu_0$ vs. $H_A: \mu > \mu_0$)

•
$$n = (z_{\alpha} + z_{\beta})^2 \times (\frac{\sigma}{\Delta})^2$$

- Power calculations: z-test ($\sigma = 0.4$)
 - One sample
 - Consoder power = $1 \beta = 0.8$
 - Consider effect size = $\Delta = 0.4$
 - One-sided test ($H_0: \mu \leq 0$ vs. $H_A: \mu > 0$)
 - $z_{0.05} = -1.65$, $z_{0.20} = -0.84$

•
$$n = (-1.65 - 0.84)^2 \times \left(\frac{0.4}{0.4}\right)^2 \approx 6.1 \to 7$$

Power calculations z-test (σ = 0.4)
 - Δ = 0.4

18

- Mostly we do not know σ or Δ
 - Use published data
 - Caution! Published effect estimates are often too high because of publication bias.
 - Guess: (« σ = 2 is too high and σ = 0.1 is too low.»)
 - Consider what is clinically relevant («We don't care about $\Delta < 0.4$.»

- Will not go through the mathematics for
 - T-tests
 - More than one sample
 - Paired observations
 - χ^2 -tests
 - Regressions
 - Etc.

- T-tests are similar to z-tests
 - Do not assume a known σ
 - Power is lower than for z-tests if n and Δ are equal
 - Unless we feel very certain about our σ estimates, we should base the power on T-tests

- Stata 13 syntax
 - power *method* μ_0 ($\mu_0 + \Delta$) [,options]
- One-sample T-test
 - power onemean 0 0.4, n(7) onesided sd(0.4)
 - 0.7544
 - Default:
 - Two-sided test
 - sd(1), power(0.8) and alpha(0.05)

- Stata 13 syntax
 - power *method* μ_0 ($\mu_0 + \Delta$) [,options]
- One-sample T-test
 - Omitting n() propts sample size calculations
 - power onemean 0 0.4, onesided sd(0.4)

• N=8 (for $1 - \beta = 0.8$)

- power onemean 0 0.4, onesided sd(0.4)power(0.95)
 - N=13 (for $1 \beta = 0.95$)

- Stata 13 syntax
 - power *method* μ_0 ($\mu_0 + \Delta$) [,options]
- One-sample T-test
 - Adding n() AND power() AND removing $(\mu_0 + \Delta)$ propts effect size calculations
 - power onemean 0, onesided sd(0.4) n(7) power(0.8)
 - delta=1.0667 (delta = $\delta = \Delta/\sigma$)
 - ma=0.4267 (ma = $\Delta + 0$)

- Stata 13 syntax
 - power *method* μ_0 ($\mu_0 + \Delta$) [,options]
- One-sample T-test
 - Plots power as function of n
 - power onemean 0 0.4, onesided sd(0.4) n(1(1)20) graph
 - Plots power as function of Δ
 - power onemean 0 (0.01(0.1)1.01), onesided sd(0.4) n(7) graph

- Stata 13 syntax
 - power *method* μ_0 ($\mu_0 + \Delta$) [,options]
- One-sample T-test
 - Plots power as function of *n*
 - power onemean 0 0.4, onesided sd(0.4) n(1(1)20) graph
 - Plots power as function of Δ for several *n*
 - power onemean 0 (0.01(0.1)1.01), sd(0.4) n(3 7 20 100) graph(y(power) x(ma)) onesided

- Stata 13 syntax
 - power *method* μ_0 ($\mu_0 + \Delta$) [,options]

- Two-sample T-test
- Controls vs. Cases
 - $H_0: \mu_1 = \mu_2, \qquad \qquad H_A: \mu_1 \neq \mu_2$

$$-\sigma_1 = \sigma_2 = 0.4$$

$$-\Delta = \mu_2 - \mu_1$$

• power twomeans 0 0.4, sd(0.4)

-N=34

– N per group=17

- Two-sample T-test
- Controls vs. Cases

- Assume $\sigma_1 = 0.1$ and $\sigma_2 = 0.4$

- power twomeans 0 0.4, sd1(0.1) sd2(0.4)
 - -N=22
 - N per group=11

- Two-sample T-test
- Controls vs. Cases

- Assume $\sigma_1 = 0.1$ and $\sigma_2 = 0.4$

- We already had 17 in each group
- power twomeans 0 0.4, sd1(0.1) sd2(0.4)
 n(34)
 - power=0.9655

- Two-sample T-test
- Controls vs. Cases

- Assume $\sigma_1 = 0.1$ and $\sigma_2 = 0.4$

- 9 cases and 7 controls were ineligeble
- power twomeans 0 0.4, sd1(0.1) sd2(0.4) n1(10) n2(8)

- power=0.6729

- Two-sample T-test
- Controls vs. Cases

-Assume $\sigma_1 = 0.1$ and $\sigma_2 = 0.4$

- Which Δ can we detect at 80% power?
- power twomeans 0, sd1(0.1) sd2(0.4)
 n1(10) n2(8) power(0.80)
 - delta=3.2192 (?)
 - m2=0.4665 (m2=∆)

- Testing proportions (T-test)
- Test if a drug works
 - H_0 : p=30% get well within two days
 - H_A : p>30% get well within two days
 - How many patients do we need if we assume p=50% (so that $\Delta = p 0.3 = 0.2$)?

- Testing proportions (T-test)
- Test if a drug works
 - H_0 : p=30% get well within two days
 - H_A : p>30% get well within two days
 - How many patients do we need if we assume p=50% (so that $\Delta = p 0.3 = 0.2$)?
- power oneproportion 0.3 0.5

-N = 44

- Testing proportions (T-test)
- Test if a drug works
 - H_0 : p=30% get well within two days
 - H_A : p>30% get well within two days
 - For which Δ do we have a power of 0.80 if we only get 35 patients?

- Testing proportions (T-test)
- Test if a drug works
 - H_0 : p=30% get well within two days
 - H_A : p>30% get well within two days
 - For which Δ do we have a power of 0.80 if we only get 35 patients?
- power oneproportion 0.3, n(35) power(.8)
 - delta=0.2229 (delta= Δ)
 - $-pa=0.5229 (pa=p_0 + \Delta)$

- Testing proportions (χ^2 -test)
- Test which of two drugs work the best
 - $H_0: p_1 = p_2$, $H_A: p_1 \neq p_2$
 - $-\Delta = p_2 p_1$
 - Assume $p_1 = 0.75$ and $p_2 = 0.60$
 - Which n do we need to obtain a power of 0.8
- power twoproportions 0.75 0.60

- Testing proportions (χ^2 -test)
- Test which of two drugs work the best
 - $H_0: p_1 = p_2$, $H_A: p_1 \neq p_2$
 - $-\Delta = p_2 p_1$
 - Assume $p_1 = 0.75$ and $p_2 = 0.60$
 - Which n do we need to obtain a power of 0.8
- power twoproportions 0.75 0.60
 - -N=304
 - N per group=152

- Testing proportions (χ^2 -test)
- Test which of two drugs work the best
 - $H_0: p_1 = p_2$, $H_A: p_1 \neq p_2$
 - $-\Delta = \mathrm{OR}(p_2, p_1)$
 - Assume $p_1 = 0.75$ and $p_2 = 0.60$
 - Which n do we need to obtain a power of 0.8
- power twoproportions 0.75 0.60, effect(oratio)
 - delta=0.5 (odds-ratio)

- Testing proportions (χ^2 -test)
- Test which of two drugs work the best
 - $H_0: p_1 = p_2$, $H_A: p_1 \neq p_2$
 - $-\Delta = \mathrm{OR}(p_2, p_1) = 0.5$
 - -Assume $p_1 = 0.75$, $n_1 = 30$, $n_2 = 31$
 - What is the power?
- power twoproportions 0.75, n1(30) n2(31) oratio(0.5)
 - power=0.2359

- For linear regression
 - T-test
 - Simulations
- For logistic regression
 - $-\chi^2$ -test
 - Simulations
- Very difficult to predict how adjustment variables affect power

- Consequences of low power
- The positive predictive (PPV) value is the probability that a positive result is due to a true association
- $PPV = P(H_0 \text{ false}|p < 0.05)$

• PPV =
$$\frac{(1-\beta)R}{(1-\beta)R+0.05}$$

- -R is the odds of H_0 being false
- $-R = P(H_0 \text{ false})/P(H_0 \text{ true})$

• PPV =
$$\frac{(1-\beta)R}{(1-\beta)R+0.05}$$

- Test if gene is associated with disease
 - 1000 candidate genes
 - 3 are associated (we don't know which)

•
$$R = \frac{0.003}{1 - 0.003} \approx 0.003$$

•
$$PPV = \frac{0.8R}{0.000 + 0.00}$$

$$0.8R + 0.05$$

• PPV =
$$\frac{(1-\beta)R}{(1-\beta)R+0.05}$$

- Test if gene is associated with disease
 - 1000 candidate genes
 - 3 are associated (we don't know which)

•
$$R = \frac{0.003}{1 - 0.003} \approx 0.003$$

•
$$PPV = \frac{0.8R}{0.8R + 0.05} \approx 0.046$$

• PPV =
$$\frac{(1-\beta)R}{(1-\beta)R+0.05}$$

- Test if medicatin works for disease
 - Worked for similar disease
 - About 75% certain that it works this time too

•
$$R = \frac{0.75}{1 - 0.75} = 3$$

• $PPV = \frac{0.8R}{1 - 0.8R}$

0.8R + 0.05

• PPV =
$$\frac{(1-\beta)R}{(1-\beta)R+0.05}$$

- Test if medicatin works for disease
 - Worked for similar disease
 - About 75% certain that it works this time too

•
$$R = \frac{0.75}{1 - 0.75} = 3$$

•
$$PPV = \frac{0.8R}{0.8R + 0.05} \approx 0.98$$

• PPV =
$$\frac{(1-\beta)R}{(1-\beta)R+0.05}$$

- Test if medicatin works for disease
 - What if it's either way?
 - 50% sure

•
$$R = \frac{0.50}{1-0.50} = 1$$

• $PPV = \frac{0.8R}{1-0.8R}$

0.8R+0.05

• PPV =
$$\frac{(1-\beta)R}{(1-\beta)R+0.05}$$

- Test if medicatin works for disease
 - What if it's either way?
 - 50% sure

•
$$R = \frac{0.50}{1 - 0.50} = 1$$

•
$$PPV = \frac{0.8R}{0.8R + 0.05} \approx 0.94$$

• PPV =
$$\frac{(1-\beta)R}{(1-\beta)R+0.05}$$

- Test if medicatin works for disease
 - What if the power is low $(1 \beta = 0.2)$?
 - 50% sure

•
$$R = \frac{0.50}{1-0.50} = 1$$

• $PPV = \frac{0.2R}{0.2R+0.05}$

• PPV =
$$\frac{(1-\beta)R}{(1-\beta)R+0.05}$$

- Test if medicatin works for disease
 - What if the power is low $(1 \beta = 0.2)$?
 - 50% sure

•
$$R = \frac{0.50}{1 - 0.50} = 1$$

•
$$PPV = \frac{0.2R}{0.2R + 0.05} = 0.80$$

• Different values of power and P(H₀ false)

• Surprising results are not likely to be true!

• Low powered results are not likely to be true!

- Recommended reading
 - Ioannidis (2005) Why most published research findings are false. PLoS Medicine.
 - Button et al. (2013) Power failure: Why small sample size undermines the reliability of neuroscience. Nature reviews, neuroscience.
 - http://simplystatistics.org/2013/12/16/asummary-of-the-evidence-that-mostpublished-research-is-false/