MEDSTA 2: Regression models in medical research

16 January 2014

Øystein Ariansen Haaland, PHD
Department of Global Public Health and Primary Care, University of Bergen

Correlation

- Pearson's r
- Measure of linear association between two variables (X and Y)
- Correlation coefficient, \mathbf{r}, is between -1 and +1 .
- If $r=0$, there is no linear association between the variables

Correlation

- Formula
- $r=\frac{\sum_{i}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum_{i}\left(x_{i}-\bar{x}\right)^{2} \sum_{i}\left(y_{i}-\bar{y}\right)^{2}}}$
- $\mathrm{r}>0$: If x_{i} and y_{i} are small (or large) at the same time.
- $\mathrm{r}<0$: If x_{i} is small when y_{i} is large (and vice versa).

Different values of r

Figure from Wikipedia

Different values of r

Figure from Wikipedia

Correlation

- If r is significantly different from 0 , we take it as evidence of an association between X and Y.
- $r=0$ does not mean that there is no association between X and Y.
- Why?

Correlation

$\mathbf{r}=\mathbf{0}$
 No association?

Figure from Wikipedia

Correlation

- Test if $\mathrm{r}=0$
- $H_{0}: r=0, H_{1}: r \neq 0$
- Will not give formula
- Stata
- pwcorr [var1] [var2], sig
- pwcorr [var1]...[varK], sig
- correlate [var1] [var2] does not give pvalue

Linear regression

- Study association between dependent variable and independent variable(s)
- Dependent variable =outcome variable =Y-variable =response variable
- Independent variable =predictor variable =covariate =X-variable
- Study variable
- Adjustment variables

Linear regression

- Simple
$-y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}$
- y_{i} is the observed value of subject i
- x_{i} is the independent variable of subject i
- β^{\prime} s are regression coefficients
- ϵ_{i} is error due to chance of subject i

Linear regression

- Assumptions
$-\epsilon_{i}$
- $\epsilon_{i} \sim N\left(0, \sigma^{2}\right)$
- σ^{2} constant for all i (homoscedasticity)
- ϵ_{i} independent of ϵ_{j} if $i \neq j$ (between subjects)
$-y_{i}$
- Relationship between y_{i} and the x_{i} is linear
- $y_{i} \sim N\left(\mu_{i}, \sigma^{2}\right)$ (because of ϵ_{i})
- $\mu_{i}=\beta_{0}+\beta_{1} x_{i}$

Linear regression

- Assumptions
$-x_{i}$
- Treated as a constant (number)
- No measurment error
- Can have any distribution
$-\beta^{\prime} \mathrm{S}$
- β_{0} is where the regression line intersects the y-axis (when $x_{i}=0$)
- If x_{i} changes 1 unit, y_{i} changes β_{1} units

Linear regression

- β^{\prime} 's are unknown
- ϵ 's are unknown
- Estimated line

$$
\begin{aligned}
& -\hat{y}_{i}=b_{0}+b_{1} x_{i} \text { or } \\
& -\hat{y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{i}
\end{aligned}
$$

Linear regression

- β^{\prime} 's are unknown
- ϵ 's are unknown
- Estimated line

$$
-\hat{y}_{i}=b_{0}+b_{1} x_{i}
$$

- Estimated error term

$$
-\hat{\epsilon}_{i}=y_{i}-\hat{y}_{i}
$$

Linear regression

- Ordinary least squares (OLS)
- Minimize the square sum of $\hat{\epsilon}_{i}$

$$
\begin{aligned}
-\hat{\epsilon}_{i} & =y_{i}-\hat{y}_{i} \\
& =y_{i}-\left(b_{0}+b_{1} x_{i}\right)
\end{aligned}
$$

- SSE $=\sum_{i} \hat{\epsilon}_{i}^{2}=\sum_{i}\left(y_{i}-\hat{y}_{i}\right)^{2}$

$$
=\sum_{i}\left(y_{i}-b_{0}-b_{1} x_{i}\right)^{2}
$$

Linear regression

- Ordinary least squares (OLS)
- How to calculate coefficients
$-b_{1}=\frac{\sum_{i}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}=\frac{S S_{X Y}}{S S_{X X}}$
$-b_{0}=\bar{y}-b_{1} \bar{x}$
- $\bar{x}=$ mean x
- $\bar{y}=$ mean y
- Estimators are generally unbiased

How well is the regression line describing the data?

Linear regression

Total variation

$$
\begin{aligned}
S S_{Y Y} & =\sum_{i}\left(y_{i}-\bar{y}\right)^{2} \\
& =\sum_{i}\left(y_{i}-\hat{y}_{i}\right)^{2}+\sum_{i}\left(\hat{y}_{i}-\bar{y}\right)^{2} \\
& =S S E+S S R \\
S S_{\text {Total }} & =S S_{\text {Error }}+S S_{\text {Regression }}
\end{aligned}
$$

Linear regression

- Percentage of total variation explained by regression line
- $R^{2}=\frac{S S R}{S S_{Y Y}}$
- R is correlation coefficient between x and y

Example of STATA output

. regress weight height, beta

Source	SS	MS
Mode1 Residua1	1802798.66	1802798.66
Tota1	4573498.21	122175

$$
\begin{aligned}
\text { Number of obs } & =22176 \\
\text { F(} 1,22174) & =14427.86 \\
\text { Prob }>\text { F } & =0.0000 \\
\text { R-squared } & =0.3942 \\
\text { Adj R-squared } & =0.3942 \\
\text { Root MSE } & =11.178
\end{aligned}
$$

weight	Coef.	Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\|$	Beta
height	1.006281	.0083776	120.12	0.000	.6278405
_cons	-97.609 1.443956				

Histogram

Normal P-P Plot of Regression Standardized Residual

Check for outliers

Linear regression

- Test of coefficients
- We want to test if $\beta_{1}=0$.
- $H_{0}: \beta_{1}=0$

$$
H_{1}: \beta_{1} \neq 0
$$

- Why $\beta_{1}=0$?

Linear regression

- Test of coefficients
- We want to test if $\beta_{1}=0$.
- $H_{0}: \beta_{1}=0$

$$
H_{1}: \beta_{1} \neq 0
$$

- Construct t-test
- Find standard error of b_{1}
$-S E\left(b_{1}\right)=\frac{S_{r e s}}{\sqrt{S S_{X X}}}$
$-s_{\text {res }}=\sqrt{\frac{S S E}{n-2}}$

Linear regression

- Test of coefficients
- We want to test if $\beta_{1}=0$.
- $H_{0}: \beta_{1}=0$

$$
H_{1}: \beta_{1} \neq 0
$$

- Construct t-test
$-t=\frac{b_{1}}{S E\left(b_{1}\right)}$
- t -distribution with n -2 degrees of freedom

$$
-t \sim t(n-2)
$$

Linear regression

- Test of coefficients
- We want to test if $\beta_{1}=0$.

$$
-H_{0}: \beta_{1}=0
$$

$$
H_{1}: \beta_{1} \neq 0
$$

- Construct t-test

	weight	Coef.	Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\|$	Beta
β_{1}	height _cons	1.006281	.0083776	120.12	0.000	.6278405

Linear regression

- Multivariate linear regression
- More than one independent variable
- Study variable
- Drug, smoking, folate
- Adjustment variable
- Sex, age, education
. summarize weight height sex light_activity heavy_activity smoking

Variable	obs	Mean	Std. Dev.	Min	Max
weight	22177	75.59839	14.36101	34	163.5
height	22181	172.1248	8.960389	140	209
sex	22204	1.540308	.4983838	1	2
light_acti~y	21574	3.205664	.8449124	4	4
heavy_acti~y	21377	2.271507	1.032141	1	4
smoking	22137	.9050459	.7977201	0	2

. pwcorr weight height sex light_activity heavy_activity smoking, sig

	weight	height		sex light_~y heavy_~y	smoking	
weight	1.0000					
height	0.6278	1.0000				
	0.0000					
light_acti~y	-0.5492	-0.7299	1.0000			
	0.0000	0.0000				
	-0.0807	-0.0196	0.0683	1.0000		
	0.0000	0.0040	0.0000			
heavy_acti~y	0.0168	0.1076	-0.0951	0.3881	1.0000	
	0.0143	0.0000	0.0000	0.0000		
smoking	0.0364	0.0167	-0.0145	-0.0205	-0.0031	1.0000

Linear regression

- Multivariate linear regression
$-y_{i}=\beta_{0}+\beta_{1} x_{1 i}+\cdots+\beta_{K} x_{K i}+\epsilon_{i}$
$-y_{i}$ is the observed value of subject i
- $x_{k i}$ is the k'th observation of subject i
- There are K observations per subject
- β^{\prime} 's are regression coefficients
$-\epsilon_{i}$ is error (as before)

Linear regression

- New assumptions
- y_{i}
- Relationship between y_{i} and ALL $x_{k i}$ is linear
$-\beta^{\prime} \mathrm{s}$
- If $x_{k i}$ changes 1 unit, y_{i} changes β_{k} units
$-x_{k}$
- No multicollinearity
- When x_{k} is highly correlated with x_{l} if $\mathrm{k} \neq l$
- E.g., birth weight and gestational age

Linear regression

- β^{\prime} 's are unknown
- ϵ 's are unknown
- Estimated line

$$
-\hat{y}_{i}=b_{0}+b_{1} x_{1 i}+\cdots+b_{K i} x_{K}
$$

- Similar approach as with univariate linear regression

- regress weight sex, beta

Source	SS	$d f$	MS
Mode1	1379527.35	1	1379527.35
Residua1	3194021.26	22175	144.037035
Tota1	4573548.6	22176	206.238664

| Number of obs | $=22177$ |
| ---: | :--- | ---: |
| $\mathrm{~F}(1,22175)$ | $=9577.59$ |
| Prob $>$ F | $=0.0000$ |
| R-squared | $=0.3016$ |
| Adj R-squared | $=0.3016$ |
| Root MSE | $=12.002$ |

weight	Coef.	Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\|$	Beta
sex	-15.82461	.1616981	-97.87	0.000	-.5492101
_cons	99.96717	.2617206	381.96	0.000	.

. ttest weight, by(sex)
Two-sample t test with equal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95\% Conf. Interval]	
1	10203	84.14256	.1208465	12.20669	83.90567	84.37944
2	11974	68.31795	.1080544	11.82393	68.10614	68.52975
combined	22177	75.59839	.0964348	14.36101	75.40938	75.78741
diff		15.82461	.1616981		15.50767	16.14155
diff $=$ mean(1) - mean(2)			degrees of freedom $=$	97.8652		

```
    Ha: diff < O
Pr(T < t) = 1.0000
```

Ha: diff != 0
$\operatorname{Pr}(|T|>|t|)=0.0000$
Ha: diff > 0
$\operatorname{Pr}(\mathrm{T}>\mathrm{t})=0.0000$

Do men weigh more than women only because they are taller?

. regress weight height sex, beta

Source	SS	df	MS
Mode1	1883772.28	2	941886.138
Residua1	2689725.94	22173	121.306361
Tota1	4573498.21	22175	206.245692

Number of obs $=22176$
$F(2,22173)=7764.52$
$\begin{array}{ll}\text { Prob }>\text { F } & =0.0000 \\ \text { R-squared } & =0.4119\end{array}$
Adj R-squared $=0.4118$
Root MSE $=11.014$

weight	Coef.	Std. Err.	t	$\mathrm{P}>\mid \mathrm{tl}$	Beta
height	.7785727	.0120753	64.48	0.000	.4857686
sex	-5.608661	.2170847	-25.84	0.000	-.194652
_cons	-49.77759	2.334861	-21.32	0.000	.

Do men weigh more than women only because they are taller?

. regress weight height sex, beta

Source	SS	df	MS
Mode1	1883772.28	2	941886.138
Residua1	2689725.94	22173	121.306361
Tota1	4573498.21	22175	206.245692

Number of obs $=22176$
$F(2,22173)=7764.52$
$\begin{array}{ll}\text { Prob }>\text { F } & =0.0000 \\ \text { R-squared } & =0.4119\end{array}$
Adj R-squared $=0.4118$
Root MSE $=11.014$

weight	Coef.	Std. Err.	t	$\mathrm{P}>\mid \mathrm{tI}$	Beta
height	.7785727	.0120753	64.48	0.000	.4857686
sex	-5.608661	.2170847	-25.84	0.000	-.194652
_cons	-49.77759	2.334861	-21.32	0.000	.

Regression analyses including height, sex, and light and heavy physical leisure time activity as independent variables

. regress weight height sex light_activity heavy_activity, beta

Source	SS	df	MS
Mode1	1811930.39	4	452982.597
Residua1	2525980.3	20974	120.433885
Tota1	4337910.69	20978	206.783806

| Number of obs | $=20979$ |
| ---: | :--- | ---: |
| F $(4,20974)$ | $=3761.26$ |
| Prob $>$ | $=0.0000$ |
| R-squared | $=0.4177$ |
| Adj R-squared | $=0.4176$ |
| Root MSE | $=10.974$ |

weight	Coef.	Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\|$	Beta
height	.790329	.0124467	63.50	0.000	.4923801
sex	-5.49161	.2242904	-24.48	0.000	-.1903996
light_acti~y	-.7872808	.0980221	-8.03	0.000	-.0462277
heavy_acti~y	-.5068424	.0808189	-6.27	0.000	-.0361951
_cons	-48.29099	2.408748	-20.05	0.000	.

Linear regression

- Prediction
- Weight=-48.3+0.79*height-5.5*sex-0.79*light activity-0.51*heavy activity
- Example
- Woman of 165 cm (sex=2)
- light physical activity 1-2 times a week (light activity=3)
- heavy physical activity 1-2 times a week (heavy activity=3)
- What is her predicted weight?

Linear regression

- Prediction
- Weight $=-48.3+0.78 *$ height-5.5*sex-0.79*light activity-0.51*heavy activity
- Example
- Woman of 165 cm (sex=2)
- light physical activity 1-2 times a week (light activity=3)
- heavy physical activity 1-2 times a week (heavy activity=3)
- What is her predicted weight?
- Weight $=-48.3+0.79 * 165-5.5 * 2-0.79 * 3-0.51 * 3=67.15 \mathrm{~kg}$

What about smoking?

. mean weight, over(smoking)
Mean estimation Number of obs = 22110
_subpop_1: smoking = Never-smoker
_subpop_2: smoking = Current-smoker
_subpop_3: smoking = Ex-smoker

Over	Mean	Std. Err.	[95\% Conf. Interva1]	
weight _subpop_1 _subpop_2 _subpop_3	75.84302	.1605173	75.52839	76.15764
73.92477	.1581386	73.61481	74.23474	
77.43938	.1837396	77.07924	77.79952	

. regress weight smoking, beta

Source	SS	$d f$	MS
Mode1	6024.52709	1	6024.52709
Residua1	4549692.24	22108	205.793932
Tota1	4555716.77	22109	206.057115

Number of obs	$=22110$	
F 1, 22108)	$=$	29.27
Prob $>\mathrm{F}$	$=0.0000$	
R-squared	$=0.013$	
Adj R-squared	$=0.0013$	
Root MSE	$=14.346$	

weight	Coef.	Std. Err.	t	$\mathrm{P}>\mid \mathrm{t\mid}$	Beta
smoking	.6544092	.1209495	5.41	0.000	.036365
_cons	75.00955	.1459137	514.07	0.000	.

Creating indicator variables

Smoking
 Never
 01
 2

$\begin{array}{llll}\text { Index _var_1 } & \mathbf{0} & \mathbf{1} & \mathbf{0} \\ \text { Index _var_2 } & 0 & 0 & \mathbf{1}\end{array}$

Creating indicator variables

. regress weight i.smoking, beta

Source	SS	$d f$	MS
Mode1	43077.8065	2	21538.9033
Residua1	4512638.96	22107	204.127152
Tota1	4555716.77	22109	206.057115

| Number of obs | $=22110$ |
| ---: | :--- | ---: |
| F(2,22107$)$ | $=105.52$ |
| Prob $>$ F | $=0.0000$ |
| R-squared | $=0.0095$ |
| Adj R-Squared | $=0.0094$ |
| Root MSE | $=14.287$ |

weight	Coef.	Std. Err.	t	$P>\|t\|$	Beta
smoking					
1					
2	-1.918242 .2257697 -8.50 0.000 -.0639349 1.596366 .241861 6.60 0.000 .0496669 _cons 75.84302 .1579407 480.20 0.000				

. regress weight height sex light_activity heavy_activity i.smoking, beta

Source	SS	df	MS
Mode1	1837625.09	6	306270.848
Residua1	2485442.81	20915	118.83542
Tota1	4323067.9	20921	206.637727

Number of obs = 20922
F (6, 20915) = 2577.27
Prob $>F=0.0000$
R-squared $=0.4251$
Adj R-squared $=0.4249$
Root MSE
$=10.901$

weight	Coef.	Std. Err.	t	$\mathrm{P}>\mid \mathrm{t\mid}$	Beta
height	.7821648	.0123927	63.11	0.000	.4874925
sex	-5.592277	.2232835	-25.05	0.000	-.1939631
light_acti~y	-.8499602	.0976794	-8.70	0.000	-.0499033
heavy_acti~y	-.6278786	.0807802	-7.77	0.000	
smoking					-.06848362
1	-2.065611	.1782763	-11.59	0.000	.0342332
2	1.103528	.1897556	5.82	0.000	
_cons	-45.82763	2.403266	-19.07	0.000	

Linear regression

- Model selection
- backward selection:
- Exclude exposure variable with largest pvalue in multivariate analysis and reestimate
- repeat this until all terms are significant.
- forward selection:
- Include exposure variable with lowest pvalue in univariate analysis and re-estimate
- repeat this until all terms are no longer significant

Linear regression

- Model selection
- "Change in estimate"
- Adjusting for confounding
- Starting model: One study variable
- Enter independent variables if they change the coefficient (effect estimate) of the study variable
- "Change" can be defined as, e.g., 10\%

Linear regression

- Model selection
- Akaike information criterion (AIC)
- Model which is "closest" to the data
- regress [dep] [ind1] ... [indK]
- estat ic
- Low AIC is good.
- Select among models with the lowest AIC
- A difference of less than 2 is small
- A difference of 4-7 is large
- A difference of more than 10 is huge
- Akaike weights (advanced!)

Linear regression

- Model selection
- WARNING: NONE OF THESE METHODS ARE VERY GOOD!
- Best to use other information than statistical selection methods.
- What is known about the relationships between your variables?
- Selection probably will affect effect estimates and p -values.
- Always run different approaches and compare

