MEDSTA 2: Regression models in medical research

16 January 2014

Øystein Ariansen Haaland, PHD Department of Global Public Health and Primary Care, University of Bergen

- Pearson's **r**
- Measure of linear association between two variables (X and Y)
- Correlation coefficient, r, is between
 -1 and +1.
- If r=0, there is no linear association between the variables

• Formula

•
$$r = \frac{\sum_{i} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i} (x_i - \bar{x})^2 \sum_{i} (y_i - \bar{y})^2}}$$

- r>0: If x_i and y_i are small (or large) at the same time.
- r<0: If x_i is small when y_i is large (and vice versa).

Different values of r

Figure from Wikipedia

Different values of r

Figure from Wikipedia

Real data

- If r is significantly different from 0, we take it as evidence of an association between X and Y.
- r=0 does not mean that there is no association between X and Y.
- Why?

r=0 No association?

Figure from Wikipedia

- Test if r=0
- $H_0: r = 0, H_1: r \neq 0$
- Will not give formula
- Stata
 - pwcorr [var1] [var2], sig
 - pwcorr [var1]...[varK], sig
 - correlate [var1] [var2] does not give pvalue

- Study association between dependent variable and independent variable(s)
- Dependent variable =outcome variable =Y-variable =response variable
- Independent variable =predictor variable =covariate =X-variable
- Study variable
- Adjustment variables

- Simple
 - $-y_i=\beta_0+\beta_1x_i+\epsilon_i$
 - y_i is the observed value of subject i
 - x_i is the independent variable of subject i
 - β 's are regression coefficients
 - ϵ_i is error due to chance of subject i

• Assumptions

 $-\epsilon_i$

- $\epsilon_i \sim N(0, \sigma^2)$
- σ^2 constant for all i (homoscedasticity)
- ϵ_i independent of ϵ_j if $i \neq j$ (between subjects)
- $-y_i$
 - Relationship between y_i and the x_i is linear
 - $y_i \sim N(\mu_i, \sigma^2)$ (because of ϵ_i)
 - $\mu_i = \beta_0 + \beta_1 x_i$

• Assumptions

 $-x_i$

- Treated as a constant (number)
 - No measurment error
- Can have any distribution

– β 'S

- β_0 is where the regression line intersects the y-axis (when $x_i = 0$)
- If x_i changes 1 unit, y_i changes β_1 units

- β 's are unknown
- ϵ 's are unknown
- Estimated line

$$-\hat{y}_i = b_0 + b_1 x_i \text{ or}$$
$$-\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

- β 's are unknown
- ϵ 's are unknown
- Estimated line

$$-\hat{y}_i = b_0 + b_1 x_i$$

• Estimated error term

$$-\hat{\epsilon}_i = y_i - \hat{y}_i$$

- Ordinary least squares (OLS)
- Minimize the square sum of $\hat{\epsilon}_i$

$$-\hat{\epsilon}_{i} = y_{i} - \hat{y}_{i}$$
$$= y_{i} - (b_{0} + b_{1}x_{i})$$
$$• SSE = \sum_{i} \hat{\epsilon}_{i}^{2} = \sum_{i} (y_{i} - \hat{y}_{i})^{2}$$
$$= \sum_{i} (y_{i} - b_{0} - b_{1}x_{i})^{2}$$

- Ordinary least squares (OLS)
- How to calculate coefficients

$$- b_1 = \frac{\sum_i (x_i - \bar{x})(y_i - \bar{y})}{\sum_i (x_i - \bar{x})^2} = \frac{SS_{XY}}{SS_{XX}}$$

$$-b_0 = \overline{y} - b_1 \overline{x}$$

- \bar{x} =mean x
- \bar{y} =mean y
- Estimators are generally unbiased

How well is the regression line describing the data?

Total variation

$$SS_{YY} = \sum_{i} (y_i - \bar{y})^2$$

$$= \sum_{i} (y_i - \hat{y}_i)^2 + \sum_{i} (\hat{y}_i - \bar{y})^2$$

$$= SSE + SSR$$

$$SS_{Total} = SS_{Error} + SS_{Regression}$$

• Percentage of total variation explained by regression line

•
$$R^2 = \frac{SSR}{SS_{YY}}$$

• *R* is correlation coefficient between x and y

Example of STATA output

. regress weig	ght height, be	ta		SS R	SS E	SS YY
Source	SS	df		MS		Number of obs = 22176
Model Residual	1802798.66 2770699.56	1 22174	1802 124.	2798.66 952627	•	P(1, 22174) = 14427.80 Prob > F = 0.0000 R-squared = 0.3942 Adi B squared = 0.3042
Total	4573498.21	22175	206.	245692		Root MSE = 11.178
weight	Coef.	Std. E	rr.	t	P> t	Beta
height _cons	1.006281 -97.609	00837 1.4439	76 56	120.12 -67.60	0.000 0.000	.6278405

Normal P-P Plot of Regression Standardized Residual

28

Check for outliers

- Test of coefficients
- We want to test if $\beta_1 = 0$.

$$-H_0: \beta_1 = 0 \qquad \qquad H_1: \beta_1 \neq 0$$

• Why $\beta_1 = 0$?

- Test of coefficients
- We want to test if $\beta_1 = 0$.

$$-H_0: \beta_1 = 0 \qquad \qquad H_1: \beta_1 \neq 0$$

- Construct t-test
 - Find standard error of b_1

$$-SE(b_1) = \frac{s_{res}}{\sqrt{SS_{XX}}}$$
$$-s_{res} = \sqrt{\frac{SSE}{n-2}}$$

- Test of coefficients
- We want to test if $\beta_1 = 0$.

$$-H_0: \beta_1 = 0 \qquad \qquad H_1: \beta_1 \neq 0$$

• Construct t-test

$$-t = \frac{b_1}{SE(b_1)}$$

 t-distribution with n-2 degrees of freedom

$$-t \sim t(n-2)$$

- Test of coefficients
- We want to test if $\beta_1 = 0$.

$$-H_0: \beta_1 = 0 \qquad \qquad H_1: \beta_1 \neq 0$$

• Construct t-test

	weight	Coef.	Std. Err.	t	P> t	Beta
β_1	height _cons	1.006281 -97.609	.0083776 1.443956	120.12 -67.60	0.000	.6278405

- Multivariate linear regression
- More than one independent variable
- Study variable
 - Drug, smoking, folate
- Adjustment variable
 - Sex, age, education

Variable	Obs	Mean	Std. Dev.	Min	Мах
weight	22177	75.59839	14.36101	34	163.5
height	22181	172.1248	8.960389	140	209
sex	22204	1.540308	.4983838	1	2
light_acti~y	21574	3.205664	.8449124	1	4
heavy_acti~y	21377	2.271507	1.032141	1	4
smoking	22137	.9050459	.7977201	0	2

. summarize weight height sex light_activity heavy_activity smoking

. pwcorr weight height sex light_activity heavy_activity smoking, sig

	weight	height	sex	light_~y	heavy_~y	smoking
weight	1.0000					
height	0.6278 0.0000	1.0000				
sex	-0.5492 0.0000	-0.7299 0.0000	1.0000			
light_acti~y	-0.0807 0.0000	-0.0196 0.0040	0.0683 0.0000	1.0000		
heavy_acti~y	0.0168 0.0143	0.1076 0.0000	-0.0951 0.0000	0.3881 0.0000	1.0000	
smoking	0.0364 0.0000	0.0167 0.0132	-0.0145 0.0309	-0.0205 0.0027	-0.0031 0.6555	1.0000

- Multivariate linear regression
 - $-y_i = \beta_0 + \beta_1 x_{1i} + \dots + \beta_K x_{Ki} + \epsilon_i$
 - y_i is the observed value of subject i
 - x_{ki} is the k'th observation of subject i
 - There are K observations per subject
 - β 's are regression coefficients
 - ϵ_i is error (as before)

- New assumptions
 - *y*_i
 - Relationship between y_i and ALL x_{ki} is linear
 - $-\beta' S$
 - If x_{ki} changes 1 unit, y_i changes β_k units
 - $-x_k$
 - No multicollinearity
 - When x_k is highly correlated with x_l if $k \neq l$
 - E.g., birth weight and gestational age

- β 's are unknown
- ϵ 's are unknown
- Estimated line

$$-\hat{y}_{i} = b_{0} + b_{1}x_{1i} + \dots + b_{Ki}x_{K}$$

• Similar approach as with univariate linear regression

sex

40

. regress weight sex, beta

Source	SS	df	MS	<u> </u>		Number of obs = 22177 E(1 22175) = 9577 59
Model Residual	1379527.35 3194021.26	1 22175	1379527. 144.0370	. 35)35	($\begin{array}{rcl} Prob > F &= 0.0000 \\ R-squared &= 0.3016 \end{array}$
Total	4573548.6	22176	206.2386	564		Adj R-squared = 0.3016 Root MSE = 12.002
weight	Coef.	Std.	Err.	t	P> t	Beta
<u>sex</u> _cons	-15.82461 99.96717	.1616	981 -97 206 381	7.87 L.96	0.000	5492101

. ttest weight, by(sex)

Two-sample	t	test	with	equal	variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
1 2	10203 11974	84.14256 68.31795	.1208465 .1080544	12.20669 11.82393	83.90567 68.10614	84.37944 68.52975
combined	22177	75.59839	.0964348	14.36101	75.40938	75.78741
diff		15.82461	.1616981		15.50767	16.14155
diff : Ho: diff :	= mean(1) - = 0	mean(2)		degrees	t = of freedom =	= 97.8652 = 22175
Ha: d Pr(T < t)	iff < 0) = 1.0000	Pr(Ha: diff != T > t) = (0 0.0000	Ha: d [†] Pr(T > t)	iff > 0) = 0.0000

Do men weigh more than women only because they are taller?

. regress weight height sex, beta

Source	SS	df	MS		Number of obs = 22176	
Model Residual	1883772.28 2689725.94	2 94 22173 12	1886.138 1.306361		Prob > F = 0.0000 R-squared = 0.4119	
Total	4573498.21	22175 20	6.245692		Root MSE = 11.014	
weight	Coef.	Std. Err	'. t	P> t	Beta	
height sex _cons	.7785727 -5.608661 -49.77759	.0120753 .2170847 2.334861	64.48 -25.84 -21.32	0.000 0.000 0.000	.4857686 194652	

Do men weigh more than women only because they are taller?

. regress weight height sex, beta

Source	SS	df	MS		Number of obs = 22176
Model Residual	1883772.28 2689725.94	2 9 22173 1	41886.138 21.306361		$\begin{array}{rcl} Prob > F &= 0.0000 \\ \hline R-squared &= 0.4119 \\ \hline Adi D arguared &= 0.4118 \\ \hline \end{array}$
Total	4573498.21	22175 2	06.245692		Root MSE = 11.014
weight	Coef.	Std. Er	r. t	P> t	Beta
height sex _cons	.7785727 -5.608661 -49.77759	.012075 .217084 2.33486	3 64.48 7 -25.84 1 -21.32	0.000 0.000 0.000	.4857686 194652

Regression analyses including height, sex, and light and heavy physical leisure time activity as independent variables

•	regress	weight	height	sex	light_activity	heavy_activity,	beta
---	---------	--------	--------	-----	----------------	-----------------	------

Source	SS	df		MS		Number of obs	=	20979
Model Residual	1811930.39 2525980.3	4 20974	4529 120	982.597 .433885	($\frac{Prob > F}{R-squared}$	=	0.0000
Total	4337910.69	20978	206	.783806		Root MSE	=	10.974
weight	Coef.	Std.	Err.	t	P> t			Beta
height sex light_acti~y heavy_acti~y _cons	.790329 -5.49161 7872808 5068424 -48.29099	.0124 .2242 .0980 .0808 2.408	467 904 221 189 748	63.50 -24.48 -8.03 -6.27 -20.05	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000 \end{array}$.4923801 .1903996 .0462277 .0361951

• Prediction

- Weight=-48.3+0.79*height-5.5*sex-0.79*light activity-0.51*heavy activity
- Example
 - Woman of 165cm (sex=2)
 - light physical activity 1-2 times a week (light activity=3)
 - heavy physical activity 1-2 times a week (heavy activity=3)
- What is her predicted weight?

• Prediction

- Weight=-48.3+0.78*height-5.5*sex-0.79*light activity-0.51*heavy activity
- Example
 - Woman of 165cm (sex=2)
 - light physical activity 1-2 times a week (light activity=3)
 - heavy physical activity 1-2 times a week (heavy activity=3)
- What is her predicted weight?
- Weight = -48.3+0.79*165-5.5*2-0.79*3-0.51*3 = 67.15kg

What about smoking?

. mean weight, over(smoking)

Mean estimation

Number of obs = 22110

_subpop_1: smoking = Never-smoker _subpop_2: smoking = Current-smoker _subpop_3: smoking = Ex-smoker

Over	Mean	Std. Err.	[95% Conf.	Interval]
weight _subpop_1 _subpop_2 _subpop_3	75.84302 73.92477 77.43938	.1605173 .1581386 .1837396	75.52839 73.61481 77.07924	76.15764 74.23474 77.79952

. regress weight smoking, beta

Source	SS	df	MS		Number of obs = $(1 \ 22108)$ =	22110
Model Residual	6024.52709 4549692.24	1 6 22108 2	024.52709 05.793932	(Prob > F = R-squared =	0.0000
Total	4555716.77	22109 2	06.057115		Adj R-squared = Root MSE =	0.0013 14.346
weight	Coef.	Std. Er	r. t	P> t		Beta
smoking _cons	.6544092 75.00955	.120949 .145913	5 5.41 7 514.07	0.000 0.000		.036365

47

Creating indicator variables

Creating indicator variables

					• •
-	rearess	weight	1	.smokina.	beta
-				· • … • … •	

Number of obs = 22110		MS	df	SS	Source
P(2, 22107) = 105.32 Prob > F = 0.0000 R-squared = 0.0095		38.9033 127152	2 2153 .07 204	7.8065 638.96 221	Model Residual
Adj R-squared = 0.0094 Root MSE = 14.287		.057115	.09 206.	716.77 221	Total
Beta	P> t	t	d. Err.	Coef. St	weight
0639349 .0496669	0.000 0.000	-8.50 6.60	257697 241861	18242 .2 96366 .	smoking 1 2
	0.000	480.20	.579407	84302 .1	_cons

•	regress	weight	height	sex	light_activity	heavy_activity	i.smoking,	beta
---	---------	--------	--------	-----	----------------	----------------	------------	------

Source	SS	df	MS		Number of $obs = 20922$
Model Residual	1837625.09 2485442.81	6 30 20915 :	06270.848 118.83542		$\begin{array}{rcl} Prob > F &= 0.0000 \\ R-squared &= 0.4251 \\ Adi R-squared &= 0.4249 \end{array}$
Total	4323067.9	20921 20	06.637727		Root MSE = 10.901
weight	Coef.	Std. Er	r. t	P> t	Beta
height sex light_acti~y heavy_acti~y	.7821648 -5.592277 8499602 6278786	.012392 .223283 .097679 .080780	7 63.11 5 -25.05 4 -8.70 2 -7.77	0.000 0.000 0.000 0.000	.4874925 1939631 0499033 0448362
smoking 1 2	-2.065611 1.103528	.178276 .189755	3 -11.59 6 5.82	0.000 0.000	0687006 .0342332
_cons	-45.82763	2.40326	6 -19.07	0.000	

- Model selection
 - backward selection:
 - Exclude exposure variable with largest pvalue in multivariate analysis and reestimate
 - repeat this until all terms are significant.
 - forward selection:
 - Include exposure variable with lowest pvalue in univariate analysis and re-estimate
 - repeat this until all terms are no longer significant

- Model selection
 - "Change in estimate"
 - Adjusting for confounding
 - Starting model: One study variable
 - Enter independent variables if they change the coefficient (effect estimate) of the study variable
 - "Change" can be defined as, e.g., 10%

- Model selection
 - Akaike information criterion (AIC)
 - Model which is "closest" to the data
 - regress [dep] [ind1] ... [indK]
 - estat ic
 - Low AIC is good.
 - Select among models with the lowest AIC
 - A difference of less than 2 is small
 - A difference of 4-7 is large
 - A difference of more than 10 is huge
 - Akaike weights (advanced!)

- Model selection
 - WARNING: NONE OF THESE METHODS ARE VERY GOOD!
 - Best to use other information than statistical selection methods.
 - What is known about the relationships between your variables?
 - Selection probably will affect effect estimates and p-values.
 - Always run different approaches and compare